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1 Statement of Problem

First, in the area of traditional methods model calibration we have continued developing tools for

efficient global optimization of complex environmental models. In particular, we are refining hybrid

optimization algorithms that blend evolutionary strategies for global optimization with local search

based on a locally constructed surrogate model. A conference presentation was given on this topic

and an article appeared in the conference proceedings ( [2]; attached in Appendix A). Moreover, a

journal article was prepared and submitted, ( [1]; attached in Appendix B). Most recently we have

begun utilizing state of the art techniques for constructing certain local quadratic polynomial models

with special approximation properties [14] to utilize in a local search step that is interwoven between

iterations of an evolutionary strategy.

Second, we are exploring surrogate modelling techniques for the acceleration of Bayesian model cal-

ibration. In Bayesian model calibration Monte Carlo simulation is used to infer approximate posterior

probability distributions of the parameters given the observed data, but many model runs are required

for this inference. We have recently begun collecting data from previous model runs to interpolate

future estimates of the posterior probability. These estimates are used to filter out unnecessary model

runs, thus increasing the efficiency of the Monte Carlo simulation.
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2 Results Summary

2.1 Introduction

Computer-based calibration of environmental models generally involves minimization of an “objective

function”-a measure of model-to-measurement misfit. In the watershed modeling context it could be

specified as differences between measured and modeled stream flows (see, for example, [3, 5]).

An important consideration in assessing the performance of parameter estimation software is that

of run time. Parameter estimation software must run the model to be calibrated many times in the

course of minimizing the objective function. For models in which the objective function surface contains

multiple local minima, model run times are high, or when multiple prediction specific calibrations must

be conducted [8], it is particularly important that the parameter estimation software conducts a minimal

number of model runs.

Our parameter estimation software is called the Model Independent Calibration and Uncertainty

analysis Toolbox (MICUT) and it is compatible with the PEST model independent protocol [4] making

it immediately usable by a large community. MICUT, while compatible with PEST, is distinctive in

that it employs more efficient algorithms for calibration of complex models than PEST [9]. If a single

model run takes hours or days to execute this is significant. The primary focus of my research is on

the further develpment of efficient tools for model calibration and uncertainty analysis.

For calibration of models in which the objective function is not smooth or has many local min-

ima the use of traditional gradient-based search, even when combined with a global, stochastic search

strategy is at best inefficient and at worst fails completely. For such models, one approach is to use

evolutionary strategies, in which survival of the fittest is used to adapt the best parameter sets until

a global minimizer is found. One of the best evolutionary strategies to date is the Covariance Matrix

Adaptation Evolution Strategy (CMAES; [6]).

2.2 The Covariance Matrix Adaptation Evolution Strategy

The CMAES is an evolution strategy that adapts the covariance matrix of a normal search distribution.

The user specifies a population size of λ individuals. The randomly selected initial population is x
(0)
1:λ.

After evaluating the objective function, the best µ individuals (with smallest values) are selected

and their center of mass is computed by 〈x〉(0)W =
∑µ
k=1 ωkx

(0)
k:λ. The recombination weights, ωk, are

positive and sum to one. After selection and recombination, a new population is created accordig to

x
(t+1)
1:λ = 〈x〉W + σ(t)

√
C(t)z

(t)
1:λ. The covariance matrix, C(t), and the step size, σ(t) are updated after

each generation [6]. The z(t) are randomly sampled from the multivariate standard normal distribution.
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On convex-quadratic functions CMAES converges log-linearly after an adaption time that scales

between 0 and n2, where n is the number of parameters. For multimodal objective functions, CMAES

does a surprisingly good job at finding the global minimum, but the population size must be increased

significantly and with considerable problem variation, to ensure global convergence [7]. For the syn-

thetic problems and watershed models we have thus far considered the CMAES algorithm yields slower

convergence on average than the hybrid algorithm using the Levenberg-Marquardt for local search and

the Multi-Level Single Linkage algorithm for global search [9], thus we are attempting to accelerate the

convergence of CMAES while maintaining its robustness for finding good approximations to the global

minimizer.

2.3 Hybrid Evolutionary Strategy and Local Search

Optimization of expensive functions is more feasible with algorithms that require fewer evaluations

of the objective function. In that spirit, we propose a hybrid evolution strategy. As in [10, 11, 16],

the proposed algorithm combines an evolution strategy (ES) with a gradient search technique. The

proposed algorithm differs from the algorithm of Tahk, et al [10], in that it uses a local radial basis

function approximation to the objective function, instead of finite differences, to compute approximate

first and second derivatives to the objective function surface. The derivative information is used to

propagate a gradient individual alongside the evolving population. The gradient individual is included

for possible selection each generation. The use of radial basis functions allows the derivatives to be

estimated without imposing any special structure on the evolving population of points as is required

in [10]. This enables the use of the CMAES which proved to be rather sensitively tuned and evidently

breaks when the evolving population is perturbed strongly from its random Gaussian distribution.

Tests on a small suite of standard test functions and a hydrologic application show that this hy-

brid approach can greatly accelerate the covariance matrix adaptation evolution strategy (CMAES)

requiring many fewer evaluations of the objective function than standard CMAES at a greater cost

per optimization iteration than standard CMAES. However, the extra computational time would be

incidental for a complex environmental model.

Complete details of the method and the numerical tests can be found in the attached conference

paper [2] in Appendix A and manuscript submitted to Engineering Optimization [1] in Appendix B.

The current version of the hybrid CMAES/rbf-assisted local search requires that the objective

function be reasonably smooth, but this is often not the case for environmental models. Two new

variations of the hybrid algorithm are currently being developed that utilize local models requiring

less smoothness [14, 15]. Preliminary efforts using these local models to calibrate real surface water
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hydrological models have been very promising. Future work will include incorporating one or both of

these new hybrid algorithms into our Model Independent Calibration and Uncertainty analysis Toolbox

where they will available for application to problems of interest for the Corps of Engineers and other

researchers.

2.4 Efficiency enhancements for Bayesian Model Calibration

In Bayesian Model Calibration, the model parameters are treated as random variables with unknown

distributions. If any information about the parameters is known in advance this is specified as a prior

distribution. In the hydrologic context usually only bounds on the parameters are known so only a

uniform or uninformative prior distribution is typically assumed for each parameter. The idea, then,

is to find the posterior probability distribution of the parameter sets given the observed data. Because

the probability distribution of the data is unknown this is often done by Monte Carlo simulation using

a so-called Monte Carlo Markov Chain (MCMC) sampler. There are many such samplers, of which

one that is particularly popular in the hydrological community is the Shuffled Complex Evolution

Metropolis (SCEM-UA) sampler [13]. As with all MCMC samplers, the convergence to the posterior

distribution of the parameters can be quite slow and may require thousands or tens of thousands of

model evaluations. Thus, while a complete characterization of the probability distribution is desirable,

it may be prohibitively expensive.

Fortunately, many of the newly sampled points in the MCMC sequence may be from areas in

parameter space in which the posterior distribution is already well-sampled and additional sampling

may not lead to new information. To check for this, we store all previously sampled points in a database

along with the values of the log-likelihood function (used in the estimation of the posterior probability).

At each newly sampled point locally weighted projection regression (LWPR; [12]) is used to estimate

the posterior probability. Parameter points which are unlikely to be accepted in the current Markov

chain based on their LWPR estimated values are rejected. The actual model is evaluated and the real

posterior probability calculated for parameter points which were judged possibly acceptable by their

LWPR estimates. To assure convergence, of the Markov chains it was found necessary to, at random,

occasionally evaluate the true posterior probability at a proportion of the rejected points as well. This

approach resulted in a 20%-30% savings of model evaluations while converging to comparable posterior

probability distributions. While this was a good first effort, we are attempting to refine the approach to

yield at least 50% savings before publishing the method. A preliminary report is attached in appendix

C.
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Abstract

Optimization of expensive functions is more feasible with algorithms that require fewer evaluations of
the objective function. In that spirit, this paper proposes a hybrid evolution strategy. As in [11, 9, 10],
the proposed algorithm combines an evolution strategy (ES) with a gradient search technique. The
proposed algorithm differs in that it uses a local radial basis function approximation to the objective
function to compute approximate first and second derivatives to the objective function surface. The
derivative information is used to propagate a gradient individual alongside the evolving population. The
gradient individual is included for possible selection each generation. Tests on a small suite of standard
test functions and a hydrologic application show that this hybrid approach can greatly accelerate the
covariance matrix adaptation evolution strategy (CMAES). This hybrid approach is flexible and requires
little modification of an existing evolution strategy; thus, it does not seem to alter negatively affect
convergence when an objective function does not have sufficient smoothness for derivatives to yield useful
descent information.
Keywords: Hybrid algorithms; Evolution strategies; Quasi-Newton method

1. Introduction
For multi-modal fitness functions evolution strategies are known to be reliable, but slow for approximating
global optima. A large population size is required for the strategy to explore the real parameter space, but
this slows local convergence. In contrast, classical gradient-based algorithms are exploitative in nature
and converge quickly to local minima, but they are not good at finding the global minimum.
The algorithm proposed in this paper follows the hybrid evolution strategy first outlined in [11], but
differs in two respects: first and most importantly, a more accurate and more flexible method is utilized
to approximate the derivatives required for the local search, and second, the evolution strategy is the
covariance matrix adaptation evolution strategy (CMAES) which is known to be particularly effective
at approximating global optima. CMAES is especially effective at locating global optima when used in
conjunction with a population doubling strategy as described in [1].
The derivative estimation method will be explained first and it will be shown how the approximated
derivatives are used to propagate the gradient individual between generation. Next the hybrid algorithm
will be summarized. We have implemented the hybrid algorithm in CMAES, and it will be shown how
the new hybrid algorithm performs on a suite of test functions in 10 dimensions. Finally, we briefly
demonstrate an application in hydrological modeling.

2. Gradient Individual using Radial Basis Functions
The foundation of this optimization algorithm is the usual evolution strategy in which new offspring are
produced at each generation by recombination and mutation (see Figure 1). The objective function is
evaluated at each of these offspring and the fittest offspring are selected as parents for the next generation.
In the hybrid approach, an additional individual, called the gradient individual [9], is propagated by a
different mechanism each generation. The gradient individual, xtg, is either the fittest offspring of the
current generation (individual with lowest function value) or the gradient individual from the previous
generation. From information gathered during the evolution of the population the first and second
derivatives of the objective function are estimated at xtg and used to perform an update of the gradient
individual which is hopefully moved closer to a stationary point.
As an evolution strategy proceeds, it typically does not use the previously evaluated points beyond
the current generation; however, in our hybrid strategy we store the last N points and their evaluated
functions values in a database. To update the gradient individual we use a k-nearest neighbor local
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function approximation of the objective function using the k nearest neighbors (Euclidean distance) of
xtg in the database to construct a cubic radial basis function (RBF) approximation:

s(x) =
k∑
i=1

wiφ (‖x− xi‖2) + p(x), x ∈ Rn (1)

where xi, i = 1, 2, . . . , k are the k nearest neighbors of xtg in the n-dimensional search space, p is in Πn
2

(the linear space of polynomials in n variables of degree less than or equal to 2), and φ(r) = r3. Cubic
radial basis functions were selected not only for their simplicity and differentiability, but also because
they have been used successfully as surrogate models for pre-evaluating function values to lessen the
number of function evaluations required by an evolution strategy [8].
Define the matrix Φ ∈ Rk×k by

(Φ)ij := φ (‖xi − xj‖2) , i, j = 1, . . . k. (2)

Let n̂ = (n+ 1)(n+ 2)/2 be the dimension of Πn
2 , let p1, . . . , pn̂ be a basis of this linear space, and define

the matrix P ∈ Rk×n̂ as follows:

Pij := pj(xi), i = 1, . . . , k; j = 1, . . . , n̂. (3)

In this model, the RBF that interpolates the points (x1, f(x1)), . . . (xk, f(xk)) is obtained by solving the
system (

Φ P
PT 0

)(
w
c

)
=

(
F
0n̂

)
(4)

where F = (f(x1), . . . , f(xk))T , w = (w1, . . . , wk) ∈ Rk and c = (c1, . . . , cm̂)T ∈ Rm̂. Powell [7] gives
sufficient and necessary conditions for the system above to be uniquely solvable, but in practice the real
issue can be that the coefficient matrix above becomes ill-conditioned. However, we have found that
simply rescaling and shifting the points x1, . . . , xk so that they all lie in [−1, 1]n is usually sufficient to
address this issue.
Once the RBF, s(x), has been determined by Eq.(1), then s(x) is differentiated analytically to determine
approximations to the gradient and Hessian of the objective function, f(x). For the gradient vector, g,
evaluated at the gradient individual, xtg:

gi =
(
∇f(xtg)

)
i

=
∂

∂xi
f(xtg) ≈

(
∇s(xtg)

)
i

=
∂

∂xi
s(xtg), i = 1, . . . , n (5)

For the Hessian matrix, H, evaluated at the gradient individual, xtg:

Hij =
(
H(xtg)ij

)
=

∂2

∂xi∂xj
f(xtg) ≈

∂2

∂xi∂xj
s(xtg), i, j = 1, . . . , n (6)

Similar techniques for derivative approximation are routinely used in the solution of partial differential
equations using so-called meshless methods. Moreover, such approximations can be spectrally accurate
[3].
Once the offspring and their function values from the current generation have been appended to the
database, we construct the RBF as above and determine the gradient and Hessian approximated at the
current gradient individual xtg. Finally, a new gradient individual is found by the standard update:

xt+1
g = xtg −H−1g. (7)

The new gradient individual is then added to the current generation of offspring for possible selection.
When the population, and hence the points in the database, are sufficiently close to a minimum then the
gradient and Hessian can be accurate and can yield fast local convergence to the minimum. However,
when the evolving population is far from a local minimum, then the gradient and Hessian tend to be
inaccurate and/or at least the update does not lead to a minimum. It’s worth noting that the addition
of this gradient individual to the offspring pool for selection seems to never be harmful to the search.
This method of gradient-based search is similar to a quasi-Newton method, but in quasi-Newton methods
the first derivatives of the function are usually available (or approximated by centered finite differences),

2
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Figure 1: Flowchart for the hybrid evolution strategy algorithm

and the Hessian matrix is updated iteratively with information from new function and gradient eval-
uations. In fact, the original gradient individual/evolution strategy hybrid approaches of Tahk, et al
[9, 10] used the quasi-Newton method to advance the gradient individual. In contrast, in this proposed
approach, the Hessian matrix is completely recomputed at each generation from a local approximation
to the objective function and should be more accurate than traditional quasi-Newton Hessian approxi-
mations.

3.Covariance Matrix Adaptation Evolution Strategy with Gradient Individual
The basic outline of the hybrid evolution strategy algorithm is illustrated in the flowchart in Figure 1. To
study the efficacy of this version of the hybrid gradient individual / evolution strategy approach we have
implemented the algorithm in the context of CMAES. While we have also done this in the context of
the standard evolution strategy, we use CMAES here because it seems to have better global convergence
properties. We want to see if the addition of the gradient individual to the offspring at each generation
will negatively affect the convergence of the CMAES. In particular, we utilize the Matlab version of
CMAES (version 2.54) provided publically by Hansen [6].
CMAES is an evolution strategy that adapts a full covariance matrix of a normal search distribution

[5]. The strategy begins with an initial population of λ individuals x
(0)
k=1:λ. After evaluating the objective

function, the best µ individuals are selected as parents and their centroid is computed by using a weighted

average: 〈x〉(0)W =
∑µ
k=1 wkx

(0)
k:λ, where the weights, wi, are positive reals and sum to one. The notation

xk:λ is called selection notation and represents the point with the kth lowest corresponding objective fitness
value. While many weighting schemes have been proposed, here we use the super-linear weights: wi =
ln(µ)− ln(i), i = 1, . . . , µ, wherein the individuals with lowest fitness values get the highest recombination
weights.
After selection and recombination a new population is created by:

x
(t+1)
k=1:λ = 〈x〉(t)W + σ(t)B(t)D(t)zk=1:λ (8)

where zk ∼ N(0, I) are independent realizations of an n-dimensional standard normal distribution with
mean zero and covariance matrix I. The base points, zk, are rotated and scaled by the eigenvectors, B(t),
and the square root of the eigenvalues ,D(t), of the covariance matrix ,C(t). The covariance matrix, C(t),
and global step size, σ(t), are updated after each generation. This approach yields a strategy that is
invariant to any linear transformation of the search space. Equations for initializing and updating the
strategy parameters are given in [4].
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Table 1: Pseudo-code of the hybrid algorithm.

1: Generate and evaluate initial population x
(0)
k=1:λ

2: Append these points to the database

3: Choose best individual and set x
(0)
g

4: Set t = 0, g0 = 0n×1, H0 = C(0) = In×n
5: repeat
6: Compute nearest neighbor RBF and find gt and Ht

7: Update the gradient individual x
(
gt+ 1) = xg − (Ht)

−1gt

8: Evaluate x
(t+1)
g and append to the database if feasible

9: Select the best µ individuals from the population and x
(t+1)
g

10: Generate new population x
(t+1)
k=1:λ by recombination and mutation

11: Evaluate new population and append to database.

12: if mini f(xi) < f(x
(t)
g ) then

13: swap individual with lowest function value and x
(t)
g

14: end if
15: t = t+ 1
16: until Stopping criteria are satisfied

Pseudo-code for the CMAES-RBFGI algorithm is shown in Table 1. One additional feature that has
not been mentioned is that a weighted norm is used to compute nearest neighbors for determining the
support of the local radial basis function approximation. We use the current covariance matrix of the
CMAES since it should reflect the shape of search distribution and the objective function surface. The
eigenvector/eigenvalue decomposition of the current covariance matrix is C = BD2BT . The distance
between a point x ∈ Rn and the current gradient individual xg is measured as ‖(BD)−1(x− xg)‖2. (For
instance, a unit ball in this norm will be elliptically shaped to fit in a long narrow valley in the search
space.) The nearest neighbors in this norm should be ideal points for constructing an approximation to
the Hessian matrix.

4. Hybrid Algorithm applied to test suite
A small suite of test problems has been selected to compare the performance of our hybrid CMAES
gradient individual algorithm (CMAES-RBFGI) with ordinary CMAES. For comparison, we have also
implemented the quasi-Newton Hessian-approximation gradient individual approach of Tahk, et al. [10]
in the context of CMAES (their implementation was in the standard evolution strategy); we refer to this
implementation as CMAES-QNGI.
In CMAES-QNGI, after recombination (finding the centroid of the selected parents), only the first half of
the new population of individuals is generated by Eq.8. After evaluating the objective function for these
individuals, the current gradient individual is swapped for an individual with lower objective function
value, if one exists, to ensure that the gradient individual is the current best point. The remainder of
the current population is formed by reflecting the first half of the population symmetrical through the
gradient individual in Rn. This symmetrically selected population reduces the order of the discretization
errors in forming the first and second derivative approximations at the gradient individual.
A summary of the selected test functions is shown in Table 2. Functions f1, the classical sphere function,
and f2 are simple unimodal functions. f3 is a simple unimodal function with random noise. f4 is a simple
unimodal function but is not differentiable at the minimum (or at many other points). f5 is the classical
Rosenbrock function which has two minima and a long flat valley. f6, f7, and f8 are all multimodal. The
Rastrigin function, f7 presents some difficulty for CMAES, while Ackley function has the feature that it
is not differentiable at the global minimum. All of the functions have their global minimum value of zero
at zero.
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Table 2: Test Functions for Hybrid Optimization Strategy
Name Definition Search Domain

Sphere f1(x) =
n∑
i=1

x2i [−40, 60]n

Schwefel 1.2 f2(x) =
n∑
i=1

 i∑
j=1

xj

2

[−40, 60]n

Schwefel 1.2 f3(x) = f2(x)(1 + 0.4z) where z is N(0, 1)n [−40, 60]n

with noise

Schwefel 1.5 f4(x) =
n∑
i=1

|xi|+
n∏
i=1

|xi| [−40, 60]n

Rosenbrock f5(x) =
n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)

2
]

[−40, 60]n

Griewank f6(x) = 1 +
n∑
i=1

x2i
4000

−
n∏
i=1

cos

(
xi√
i

)
[−600, 600]n

Rastrigin f7(x) = 10n+
n∑
i=1

n∑
i=1

(
x2i − 10 cos (2πxi)

)
[−40, 60]n

Ackley f8(x) = −20 exp

−0.2

√√√√ 1
n

n∑
i=1

x2i

 [−32, 32]n

− exp

(
1
n

n∑
i=1

cos (2πxi)

)
+ 20 + e

Figure 2 shows convergence graphs for each of the test functions for each of the three algorithms:
CMAES, CMAES-RBFGI, CMAES-QNGI. For each function the dimension is set at n = 10. The pop-
ulation size is λ = 30 with µ = 15 parents being selected at each generation. The initial global step
size, σ is set to 30% of the total length of the search domain in each dimension. The initial population
is sampled from a uniform distribution, and the same samples are used to initialize each of the three
algorithms. For the CMAES-RBFGI algorithm, the local RBF approximation is constructed using the k
nearest neighbors with k = d1.5(n+1)(n+2)/2e = 99 which is just 50% larger than the minimum number
of points necessary to construct a quadratic polynomial interpolant in Rn. The k nearest neighbors are
selected from among the last N = 2k = 198 individuals that have been evaluated. For each algorithm,
30 trials are conducted for each test function. The algorithm is stopped when a minimum objective
function value of 10−10 is reached or when the best objective function value does not change for the last
10 + 30n/λ generations or when the ratio of the range of the current function values to the maximum
current function value is below TolFun= 5× 10−10.
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Figure 2: Convergence of the median objective value over 30 trials for 10 dimensional test functions.

The convergence graphs shown in Figure 2 illustrate several things. First, the approach of Tahk, et al.
[9, 10] appears to interfere with the convergence of CMAES. This does not seem to be a case of simple
error in implementing their strategy as we have been able to successfully implement and test it in the
context of a standard evolution strategy. Rather the symmetrization of the population at each generation
seems to interfere with the finely tuned covariance matrix adaptation and step size adaptation algorithm
in this version of CMAES. The RBF gradient individual approach does not have this difficulty since it
does not modify the existing population of the evolution strategy in any way, but simply appends an
extra individual to the population. Secondly, for simple, smooth convex functions the CMAES-RBFGI
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algorithm is greatly accelerated relative to CMAES as can be seen for functions f1 : Sphere and f2 :
Schwefel 1.2. When there is strong noise in the objective function we would not expect a gradient-based
search to perform well; as can be seen in with f3, there is no acceleration with CMAES-RBFGI. Functions
f4 : Schwefel 1.5 (unimodal) and f8 : Ackley (multimodal) are not differentiable at the global minimum
(both have a sharp points). As can be seen in the figure, little acceleration is achieved by CMAES-
RBFGI. (In a test not shown here, the Ackley function was squared to remove the singularity in the
first derivative and the result appeared more like that of f6.) For the Rosenbrock function, f5 and the
Griewank function, f6 the convergence graphs show that the convergence of CMAES-RBFGI accelerates
dramatically as the population approaches the minimizer. Finally, for the Rastrigin function, f7 there
is very little difference between CMAES and CMAES-RBFGI because both algorithms have difficulty
locating the global minimum. Instead they converge to a variety of local minima.
As for reliability, the algorithms are nearly indistiguishable. For functions f1 − −f4 both CMAES and
CMAES-RBFGI found the global optimum for all trials. For the Rosenbrock function, f5 both algorithms
located the global optimum in 28 of the 30 trials. For the Griewank function, f6 CMAES found the global
optimum 21 times while CMAES-RBF-GI found it 23 times. Neither algorithm ever found the global
optimum for the Rastrigin function, f7. For the Ackley function, f8 CMAES only failed to find the global
optimum once, while CMAES-RBFGI found it for all 30 trials. These results are promising as they show
that the addition of the gradient individual does not impede the global search capability of the evolution
strategy.
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Figure 3: Convergence comparison for Rastrigin function with restarts

For the Rastrigin function we conduct a new experiment in which we run the evolution strategy using
a population doubling restart strategy [1]. Each variation of CMAES is run until convergence as above
with same λ = 30 as above and then the population size λ is doubled while µ = λ/2 and the algorithm
restarted. For CMAES-RBFGI the database of points is maintained between restarts. A total of 4
restarts are allowed to a maximum population size of 480. The maximum number of function evaluations
remains capped at 50,000. The CMAES population size increasing strategy has been shown to be one of
the most successful global optimization methods presently known for some benchmark problems [1]. The
convergence graph for the median function value over 30 trials is shown in Figure 3. Most significantly,
CMAES-RBFGI demonstrates far greater reliability. CMAES correctly locates, within the alloted 50,000
function evaluations, the global minimum at zero in 5 of the 30 trials, while CMAES-RBFGI finds the
global minimum in 22 of the 30 trials.
5. Application to calibration of a watershed model.
To demonstrate the utility of the CMAES-RBFGI algorithm in a practical setting we used the algorithm
to calibrate HYMOD, a five-parameter conceptual rainfall-runoff model (see Figure 5), introduced in [2].
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In short, given time series of daily precipitation (P ) and evapotranspiration (ET ) data the objective
is tune the parameters so that the least squares error between the model predicted stream flow time
series and the observed stream flow time series is minimized. Such problems are usually characterized by
multiple minima, sometimes unidentifiable parameters and even discontinuities in the objective function.

Figure 4: Schematic representation of the HYMOD model; from [12]

The HYMOD model is a simple rainfall excess model (details in [Moore 1985]), connected with two series
of linear reservoirs: three identical quick and a single slow response reservoir. The five parameters to be
calibrated for the model stream flow to match the observed stream flow data are: the maximum storage
capacity of the catchement, Cmax; the degree of spatial variability of the soil moisture capacity, bexp;
the factor distributing flow between the two series of reservoirs, Alpha; and the residence time of the
linear quick and slow reservoirs, Rq and Rs, respectively.
Three years, October 1, 1948, to September 30, 1951, of daily hydrologic data from the Leaf River
watershed were used for model calibration. This humid 1944 km2 watershed is located north of Collins,
Mississippi. The data, obtained from the National Weather Service Hydrology Labratory, consist of mean
areal precipitation (mm/d), potential evapotranspiration (mm/d), and stream flow (m3/s).

Table 3: Uncertainty ranges of HYMOD model parameters
Minimum Maximum Unit

Cmax 1.000 500.000 mm
bexp 0.100 2.000
Alpha 0.100 0.990
Rs 0.000 0.300 day
Rq 0.000 0.990 day

The CMAES and CMAES-RBFGI algorithms are each applied to the optimization or calibration of the
HYMOD model for 30 trials. The initial ranges of the parameter values are shown in Table 3. As for the
test functions discussed above, the algorithms are initialized with the same uniform initial distributions.
We set λ = 10 and µ = 5. Each algorithm stops when TolFun= 5e − 4, as described previously. For
CMAES-RBFGI the number of nearest neighbors used for the local RBF is k = d1.5(n+1)(n+2)/2e = 23
chosen from the last N = 2k = 46 evaluated points.
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Figure 5: Convergence of CMAES and CMAES-RBFGI for the HYMOD model.

There are many local minima, but CMAES and CMAES-RBFGI nearly always converge to one of
two minima x1 = (157.0796, 0.5440, 0.2376, 0.2624, 0.8178) where fHYMOD(x1) = 128.5346 or x2 =
(146.9868, 0.7165, 0.2416, 0.2619, 0.8313) where fHYMOD(x2) = 128.6374. The global minimum appears
to be at x1 but CMAES converges to x2 in 28 of 30 trials, while CMAES-RBFGI converges to the same
minimum in 27 of 30 trials. Evidently, the basin of attraction for the global minimum, x1, is quite small
as both algorithms have trouble finding it. The accelerated convergence of CMAES-RBF to the local
minimum of the HYMOD model is demonstrated in Figure 5. For each trial the best function value
is saved at each generation. The median function value over the thirty trials minus the value at the
local minimum , f(x2), is plotted versus the number of function evaluations. As Fiure 5 demonstrates,
the increase in convergence speed is quite dramatic: CMAES-RBFGI typically converges with fewer than
half of the objective function evaluations. Though neither algorithm reliably locates the global minimum,
both algorithms give good approximations to the global minimum that produce adequate approximations
to the daily stream flows. To locate the global minimum reliably, a restart strategy could be used as with
the Rastrigin function above. The RBFGI method would still accelerate the convergence significantly.

6. Conclusions
The gradient individual hybridization approach for evolution strategies has been shown to be effective
for significantly accelerating the convergence of the covariance matrix adaptation evolution strategy.
Likewise, it also works with the standard evolution strategy, though the results are not shown here. To
develop a hybrid evolution strategy using local RBF approximation, as we have done here, requires very
little modification of the actual evolution strategy. The evolving population itself is not modified, but the
additional gradient individual is added at each generation. In the gradient individual approach of Tahk,
et al the population is chosen symmetrically at each generation and, as seen here, this can interfere with
the convergence of CMAES. Another advantage to this approach is that no minimum population size is
required. In [9, 10] the population size must be at least twice the dimension of the search space to estimate
the gradient vector. The downside of RBFGI approach is that it is expensive to form the coefficient matrix
in Eq. 4. Moreover, the size of that system scales as O(n2), so its solution by a direct method requires
O(n6) operations per generation. Thus, there is a trade-off between the computational complexity of the
RBFGI method and the gain due to fewer function evaluations. For expensive objective functions the
cost of adding a gradient individual propagated by local radial basis function approximation is expected
to be incidental and the increase in speed can be enormous. As a result, the RBFGI approach should
be incorporated into evolution strategies for expensive functions as it can sometimes greatly increase
converge speed and reliability with little downside.
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We present a new derivative-free hybrid algorithm for global optimization of
expensive black box functions. The algorithm uses an evolution strategy for
global search. Convergence toward local minima is accelerated by including a
local search individual in each generation. The local search individual is com-
puted by extracting derivative information from a radial basis function approx-
imation to the objective function interpolated from previously evaluated points
in the evolutionary strategy. This hybrid approach does not require artificial
or user-defined switching between global and local search. Numerical results
are presented on mathematical test problems from the optimization literature
and for a small dimensional conceptual watershed model from hydrology.
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1. Introduction

Evolution strategies are known to be reliable but expensive for approximating global
optima particularly for multi-modal fitness functions. A large population size is required
for the strategy to explore the real parameter space, but this slows local convergence.
In contrast, classical gradient-based algorithms are exploitative in nature and converge
quickly to local minima, but they are not good at finding the global minimum.

Many algorithms attempt to accelerate the convergence of the evolutionary strategy, or
other population-based search method, by either switching to a local, usually gradient-
based, search at some user-defined threshold or by applying some local search operator at
every generation so that the global and local searches are interwoven. Examples of the for-
mer strategy include switching from particle swarm optimization to sequential quadratic
programming at a user defined threshold (Min et al. 2007) and similarly switching from
a genetic algorithm to a Levenberg-Marquardt algorithm (Peters et al. 2010). Examples
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of interwoven strategies include incorporation of an extra individual at each generation
of an evolution strategy calculated from an approximated Newton step (Woo et al. 2004,
Tahk et al. 2007, 2009), the use of a discrete gradient operator to improve the best in-
dividual in each generation of an evolution strategy (Abbas et al. 2003), and a hybrid
genetic algorithm that uses a quasi-Newton step to attempt to improve the fitness of
every individual at each iteration (Renders and Flasse 1996).

Another approach taken to lessen the number of expensive objective function evalu-
ations in evolutionary strategies and other population-based algorithms is to use func-
tion approximation models as surrogates for the objective function. Typically, estimated
function values are used to screen offspring and the more expensive objective function is
evaluated only at the most promising offspring (Regis and Shoemaker 2004, Kern et al.
2004). In this paper we propose to use similar function approximation models to approx-
imate derivative information for a local search that will be interwoven with the global
evolutionary strategy. In fact, the same function approximation model can be used to ap-
proximate derivatives for the local search and as a surrogate to screen objective function
values for the global search, though we do not report on that here.

We follow essentially the same framework as the hybrid evolutionary strategy first out-
lined in (Woo et al. 2004) and subsequently improved in (Tahk et al. 2007, 2009). In that
algorithm, a standard evolutionary strategy is used to advance the population at each
generation. Additionally, an individual called the gradient individual is propogated along-
side the evolving population. The gradient individual is calculated by making a Newton
update from the gradient individual of the previous generation or from the fittest point
of the current generation. The gradient is estimated from a least squares finite difference
approximation and the Hessian is iteratively approximated by one-dimensional finite dif-
ference updates using the previously evaluated points in the population. The gradient
individual hybrid approach has been shown to improve convergence of the standard evo-
lutionary strategy on a small number of mathematical test problems. One drawback to
the algorithm is that the individuals in the evolving population are selected symmet-
rically about the estimated minimum of the current generation: xmin ± ∆x. Selecting
the population symmetrically increases the accuracy of the finite difference discretiza-
tions of the derivatives, however the symmetric population seems to interfere (Baggett
and Skahill 2010) with the convergence of the covariance matrix adaptation variation
of the evolutionary strategy (CMAES due to Hansen and Ostermeier 1996). While we
have not determined exactly how the symmetrized population interferes with adaptation
in CMAES, we think it is likely related to the covariance matrix updating and/or the
step length updating within that algorithm. Another drawback to the symmetrized finite
difference hybrid algorithm is that the minimum population size for the evolutionary
strategy is 2n, where n is the dimension of the search space.

Our proposed algorithm, however, differs from the gradient individual hybrid evolution
strategy (Woo et al. 2004, Tahk et al. 2007, 2009) in two important respects: first, in-
stead of using finite differences to approximate local derivative information we fit a local
function approximation model to previously evaluated points and differentiate the model
analytically, and second, the evolution strategy is the covariance matrix adaptation evo-
lution strategy (CMAES) (Hansen and Ostermeier 1996). The use of the surrogate model
to approximate the derivatives allows the estimation of derivatives without making any
modifications to the basic structure of the evolutionary strategy. In fact, this approach
allows for hybridization of virtually any population-based search algorithm. In this arti-
cle we will focus on hybridization of CMAES which is known to be particularly effective
at approximating global optima. CMAES is especially effective at locating global optima
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when used in conjunction with a population doubling strategy as described in Auger and
Hansen (2005). More recently, a two population restart strategy in which one popula-
tion grows exponentially larger while the other is maintained at a small size has shown
promise (Hansen 2009), but is not explored here.

The derivative estimation method will be explained first and it will be shown how the
approximated derivatives are used to perform local search by calculating a “local search
individual” in each generation. Next the hybrid algorithm will be summarized. We have
implemented the hybrid algorithm in CMAES, and it will be shown how the new hybrid
algorithm performs on a small suite of test functions in 10 and 30 dimensions. Finally,
we briefly demonstrate the calibration of a conceptual watershed model using the hybrid
algorithm.

2. Local Search using Radial Basis Functions

The foundation of this optimization algorithm is an evolution strategy in which new
offspring are produced at each generation by recombination and mutation (see Figure
2). The objective function is evaluated at each of these offspring and the fittest offspring
are selected as parents for the next generation. In the hybrid approach, an additional
individual, called the local search individual, is propagated by a different mechanism
each generation. Tahk et al. (2007) refer to this additional individual as the gradient
individual, but we call it the local search individual since in practice it could be the result
of any local search that is a function of the previously evaluated points. The current local
search individual, xtls, is either the fittest offspring of the current generation (individual

with lowest function value) or the local search individual from the previous generation.
From information gathered during the evolution of the population the first and second
derivatives of the objective function are estimated at xtls and used to perform an update
of the local search individual which is hopefully moved closer to a stationary point.

As an evolution strategy proceeds, it typically does not use the previously evaluated
points beyond the current generation; however, in our hybrid strategy we store the last
N points and their evaluated functions values in a database. In practice, if the objective
function is very expensive to evaluate, we might use all of the previously evaluated points.
To update the local search individual we use a k-nearest neighbor local function approx-
imation of the objective function using the k nearest neighbors (Euclidean distance) of
xtls in the database to construct a cubic radial basis function (RBF) approximation:

s(x) =
k∑
i=1

wiφ (‖x− xi‖2) + p(x), x ∈ Rn (1)

where xi, i = 1, 2, . . . , k are the k nearest neighbors of xtls in the n-dimensional search

space, p is in Πn
2 (the linear space of polynomials in n variables of degree less than

or equal to 2), and φ(r) = r3. Cubic radial basis functions were selected not only for
their simplicity and differentiability, but also because they have been used successfully
as surrogate models for pre-evaluating function values to lessen the number of function
evaluations required by an evolution strategy (Regis and Shoemaker 2004).

Define the matrix Φ ∈ Rk×k by

(Φ)ij := φ (‖xi − xj‖2) , i, j = 1, . . . k. (2)
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Let n̂ = (n+ 1)(n+ 2)/2 be the dimension of Πn
2 , let p1, . . . , pn̂ be a basis of this linear

space, and define the matrix P ∈ Rk×n̂ as follows:

Pij := pj(xi), i = 1, . . . , k; j = 1, . . . , n̂. (3)

In this model, the RBF that interpolates the points (x1, f(x1)), . . . (xk, f(xk)) is ob-
tained by solving the system (

Φ P
P T 0

)(
w
c

)
=

(
F
0n̂

)
(4)

where F = (f(x1), . . . , f(xk))
T , w = (w1, . . . , wk) ∈ Rk and c = (c1, . . . , cn̂)T ∈ Rn̂.

Powell (1992) gives sufficient and necessary conditions for the system above to be uniquely
solvable, but in practice the real issue can be that the coefficient matrix above becomes
ill-conditioned. However, we have found that simply rescaling and shifting the points
x1, . . . , xk so that they all lie in [−1, 1]n is usually sufficient to address this issue.

Once the RBF, s(x), has been determined by Eq.(1), then s(x) is differentiated analyt-
ically to determine approximations to the gradient and Hessian of the objective function,
f(x). For the gradient vector, g, evaluated at the local search individual, xtls:

gi =
(
∇f(xtls)

)
i

=
∂

∂xi
f(xtls) ≈

(
∇s(xtls)

)
i

=
∂

∂xi
s(xtls), i = 1, . . . , n (5)

For the Hessian matrix, H, evaluated at the gradient individual, xtls:

Hij =
(
H(xtls)ij

)
=

∂2

∂xi∂xj
f(xtls) ≈ ∂2

∂xi∂xj
s(xtls), i, j = 1, . . . , n (6)

Similar techniques for derivative approximation are routinely used in the numerical so-
lution of partial differential equations using so-called meshless methods. Moreover, such
approximations can be spectrally accurate (faster than polynomial in the grid size) de-
pending on the selection of interpolation points (Fornberg et al. 2009).

Once the offspring and their function values from the current generation have been
appended to the database, we construct the RBF as above and determine the gradient
and Hessian approximated at the current local search individual xtls. Finally, a new local
search individual is found by the standard update:

xt+1

ls
= xtls −H

−1g. (7)

The new local search individual is then added to the current generation of offspring
for possible selection. When the population, and hence the points in the database, are
sufficiently close to a minimum then the gradient and Hessian can be accurate and can
yield fast local convergence to the minimum. However, when the evolving population is
far from a local minimum, then the gradient and Hessian tend to be inaccurate and the
update does not lead to a minimum. In such cases, xt+1

ls
, is typically not selected as an

offspring by the evolutionary strategy and thus does no harm to convergence of the gloal
search.

This method of gradient-based search is similar to a quasi-Newton method, but in
quasi-Newton methods the first derivatives of the function are usually available (or ap-
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proximated by centered finite differences), and the Hessian matrix is updated iteratively
with information from new function and gradient evaluations. In fact, the original evo-
lution strategy hybrid approaches of Tahk et al. (2007, 2009) used the quasi-Newton
method to advance their gradient individual. In contrast, in this proposed approach, the
Hessian matrix is completely recomputed at each generation from a local approximation
to the objective function. In the next subsection we give a synthetic numerical compari-
son to demonstrate that the numerical accuracy of our method and that of Tahk et al.
(2009) are comparable. The main difference in the methods is that, due to the use of the
function approximation model for derivative calculation, our algorithm does not require
symmetrizing the population and thus can be used to estimate derivatives and add local
search to any population-based search algorithm.

The local search technique proposed here could easily be modified so that the local
search individual is not simply the approximate Newton point. For instance, because
we have the local function approximation available, the local search individual could be
the result of a trust region search of the radial basis function along the Newton update
direction similar to the approach described by Wild et al. (2008). In fact, any kind of
local search algorithm that utilized primarily the previously collected points could be
used to find the local search individual.

2.1. A numerical comparison

To demonstrate the capability of the radial basis function approach to approximating
derivatives the 10-dimensional generalized Rosenbrock function (see Table 2) is used as
a test-case. To facilitate a direct comparision with the Hessian approximation approach
described by Tahk et al. (2009) the following synthetic numerical experiment was con-
ducted.

The global minimizer of the Rosenbrock function is the point 1 consisting of all ones.
A synthetic sequence of points was selected that converges toward the global minimizer
at a constant rate:

x(i) = 1 + 0.01
100− i

100
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), i = 1, . . . , 100 (8)

At each iteration a population, from a normal distribution as in an evolution strategy,
of λ = 80 points is generated around x(i) in two steps. In the first step, µ = 40 points
are generated by:

x = x(i) + 0.01z, (9)

where z is selected from the 10-dimensional standard normal distribution with mean
0 and variance 1. In the second step, 40 additional points are generated by reflecting
the first 40 points through the center point x(i) - this center point will serve as the
linearization point for each iteration and the method proposed by Tahk et al. (2009)
utilizes the reflected points to produce higher order approximations to the gradient and
Hessian. The Rosenbrock function is evaluated at the 81 points and the points and
function values are stored in a database for use by our radial basis function approach.

We do not present the details of the approach of Tahk et al. (2009) here, but at
each iteration the gradient is approximated by a least squares fit of the centered finite
differences of the symmetric pairs through the linearization point. Moreover, the inverse
Hessian is sequentially updated with the centered difference second derivative information

5
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from each symmetric pair of points. Utilizing these approximation techniques, at each
iteration we obtain an approximation to the gradient and inverse Hessian: gTahk and

H−1

Tahk
, respectively.

At each iteration two different approximations to the stationary point are computed.
The first is the from the approximation due to Tahk et al. (2009):

x
(i)

Tahk
= x(i) + hTahk = x(i) −H−1

Tahk
gTahk. (10)

The second approximation uses the nearest k = 132 points from among the last N = 264
points stored in the database to compute the radial basis function approximations to the
gradient and Hessian approximations described in equations (5) and (6); we label these
grbf and Hrbf, respectively.

x
(i)

rbf
= x(i) + hrbf = x(i) −H−1

rbf
grbf. (11)

We compare the update vectors hTahk and hrbf to the analytically computed update
vector in Figure 1(a). For the first 50 iterations the hTahk is a better approximation to
the analytically computed update vector than computed by radial basis functions, but
for iterations 51–100 the approximations are comparable. Even though hrbf is not always
the most accurate approximation to the update vector, it turns out that it does provide
a good search direction. Figure 1(b) shows the distance from each of the approximated

stationary points, x
(i)

Tahk
and x

(i)

rbf
, as well as the analytically computed Newton point, to

the global minimum of the 10-dimensional Rosenbrock function. It can be seen that the
radial basis function approximation local search individuals and the Tahk et al. (2009)
gradient individuals give comparable approximations to the global minimizer in spite of
the fact that hrbf is sometimes a less accurate approximation to the true update vector
(from the analytic derivatives) than that of hTahk. In both plots, it can be seen that the
radial basis function local search individiual is occasionally quite a bad approximation
to the global minimum. This appears to happen because the problem of radial basis
function interpolation and derivative interpolation is ill-conditioned and very sensitive
to the choice of interpolation points. In most generations our simple choice of nearest
neigbor points is adequate, but not always. This will be the subject of future work.

The radial basis function approach to computing the local search individual is the
more expensive algorithm, but can be adapted to be used with any population based
algorithm as it requires no modification of the underlying sampling algorithm. This
makes the radial basis function approach suitable to be used with the covariance matrix
adaptation evolution strategy as will be described in the next section.

3. Covariance Matrix Adaptation Evolution Strategy with Local
Search Individual

The basic outline of the hybrid evolution strategy algorithm is illustrated by the flowchart
in Figure 2. To study the efficacy of this version of our hybridized approach we have
implemented the algorithm in the context of CMAES. While we have also done this in
the context of the standard evolution strategy, we use CMAES here because it seems
to have better global convergence properties (Hansen and Kern 2004, Hansen 2009). In
particular, we utilize the Matlab version of CMAES (version 2.54) provided publically

6
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Figure 1. Comparison of rbf local search and Tahk local search for 10-dimensional Rosenbrock
function. Figure (a) compares the update vectors for the two methods; Figure (b) shows that the
distance from the approximated stationary point to the global minimizer is comparable for the two
methods.
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Figure 2. Flowchart for the hybrid evolution strategy algorithm

by Hansen (2004).
CMAES is an evolution strategy that adapts a full covariance matrix of a normal

search distribution (Hansen and Ostermeier 1996). The strategy begins with an initial

population of λ individuals x
(0)
k=1:λ. After evaluating the objective function, the best µ

individuals are selected as parents and their centroid is computed by using a weighted

average: 〈x〉(0)W =
∑µ

k=1wkx
(0)
k:λ, where the weights, wi, are positive reals and sum to

one. The notation xk:λ is called selection notation and represents the point with the kth

lowest corresponding objective fitness value. While many weighting schemes have been
proposed, here we use the super-linear weights: wi = ln(µ)− ln(i), i = 1, . . . , µ, wherein
the individuals with lowest fitness values get the highest recombination weights.
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After selection and recombination a new population is created by:

x
(t+1)
k=1:λ = 〈x〉(t)W + σ(t)B(t)D(t)zk=1:λ (12)

where zk ∼ N(0, I) are independent realizations of an n-dimensional standard normal
distribution with mean zero and covariance matrix I. The base points, zk, are rotated
and scaled by the eigenvectors, B(t), and the square root of the eigenvalues ,D(t), of
the covariance matrix ,C(t). The covariance matrix, C(t), and global step size, σ(t), are
updated after each generation. This approach yields a strategy that is invariant to any
linear transformation of the search space. Equations for initializing and updating the
strategy parameters are given in (Hansen and Kern 2004). For complete details on the
CMAES algorithm the tutorial (Hansen 2010) is a definitive source.

Table 1. Pseudo-code of the hybrid algorithm.

1: Generate and evaluate initial population x
(0)
k=1:λ

2: Append these points to the database

3: Choose best individual and set x
(0)

ls
4: Set t = 0, g0 = 0n×1, H0 = C(0) = In×n
5: repeat
6: Compute nearest neighbor RBF and find gt and Ht

7: Update the local search individual x
(t+1)

ls
= xls − (Ht)

−1gt

8: Evaluate x
(t+1)

ls
and append to the database if feasible

9: Select the best µ individuals from the population and x
(t+1)

ls
10: Generate new population x

(t+1)
k=1:λ by recombination and mutation

11: Evaluate new population and append to database.

12: if mini f(xi) < f(x
(t)

ls
) then

13: swap individual with lowest function value and x
(t)

ls
14: end if
15: t = t+ 1
16: until Stopping criteria are satisfied

Pseudo-code for the CMAES-RBFLSI algorithm is shown in Table 1. One additional
feature that has not been mentioned is that a weighted norm is used to compute nearest
neighbors for determining the support of the local radial basis function approximation.
We use the current covariance matrix of the CMAES since it should reflect the shape
of the search distribution and the objective function surface. The eigenvector/eigenvalue
decomposition of the current covariance matrix is C = BD2BT . The distance between a
point x ∈ Rn and the current gradient individual xls is measured as ‖(BD)−1(x−xls)‖2.
(For instance, a unit ball in this norm will be elliptically shaped to fit in a long narrow
valley in the search space.) The nearest neighbors in this norm should be ideal points for
constructing an approximation to the Hessian matrix.

4. Hybrid Algorithm applied to mathematical test suite

A small suite of test problems has been selected to compare the performance of our hybrid
CMAES local search individual algorithm (CMAES-RBFLSI) with ordinary CMAES.

8
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Our aim is to establish that the hybridized approach does not change the global conver-
gence properties of CMAES while accelerating the local convergence rate. For compari-
son, we have also implemented the quasi-Newton Hessian-approximation gradient indi-
vidual approach of Tahk et al. (2009) in the context of CMAES (their implementation was
in the standard evolution strategy); we refer to this implementation as CMAES-QNGI.

In CMAES-QNGI, after recombination (finding the centroid of the selected parents),
only the first half of the new population of individuals is generated by equation (12). After
evaluating the objective function for these individuals, the current gradient individual
is swapped for an individual with lower objective function value, if one exists, to ensure
that the gradient individual is the current best point. The remainder of the current
population is formed by reflecting the first half of the population symmetrically through
the gradient individual in Rn. This symmetrically selected population reduces the order
of the discretization errors in forming the first and second derivative approximations at
the gradient individual.

A summary of the selected test functions is shown in Table 2. Function f1 is the
quadratic Schwefel 1.2 function and is a test case for CMAES because its elliptical con-
tours test the ability of the algorithm to adapt the shape of the search distribution. f2
is the cone function selected for its lack of differentiability at the minimum. f3 is the
classical generalized Rosenbrock function which has two minima for n ≥ 4 and the long
narrow valley which slows convergence for many algorithms. f4 is the Schwefel 1.5 func-
tion which, while unimodal, is not differentiable if any xi = 0, i = 1, . . . , n. The Griewank
function f5 is multimodal, but is not particularly challenging for CMAES and is smooth.
The Rastrigin function, f6, is multimodal and smooth and is a difficult problem for
CMAES (Auger and Hansen 2005). Finally, the Ackley function, f7, is multimodal and
smooth except at the minimum and is somewhat challenging in larger dimensions for
CMAES.

9
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Table 2. Test Functions for Hybrid Optimization Strategy

Name Definition Search Domain

Schwefel 1.2 f1(x) =
n∑
i=1

 i∑
j=1

xj

2

[−40, 60]n

Cone f2(x) =

(
n∑
i=1

x2i

)1/2

[−40, 60]n

Rosenbrock f3(x) =

n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
[−40, 60]n

Schwefel 1.5 f4(x) =

n∑
i=1

|xi|+
n∏
i=1

|xi| [−40, 60]n

Griewank f5(x) = 1 +

n∑
i=1

x2i
4000

−
n∏
i=1

cos

(
xi√
i

)
[−600, 600]n

Rastrigin f6(x) = 10n+

n∑
i=1

n∑
i=1

(
x2i − 10 cos (2πxi)

)
[−40, 60]n

Ackley f7(x) = −20 exp

−0.2

√√√√ 1
n

n∑
i=1

x2i

 [−32, 32]n

− exp

(
1
n

n∑
i=1

cos (2πxi)

)
+ 20 + e

We examine only the convergence graphs to compare the algorithms. The CMAES-
RBFLSI algorithm is expensive since it constructs the local radial basis function approx-
imation at each generation based on O(n2) points using a naive linear solver that requires
O(n6) operations. The solution time of (4) can be improved by using a null space method
or iterative methods, but the presumption here is that the objective function evaluations
are very expensive. Thus local search algorithms, even expensive ones, can and should
be used to improve the efficiency of the overall search.

Figures 3-9 shows median convergence graphs based on a set of 30 trials for each of
the test functions for each of the three algorithms: CMAES, CMAES-RBFGI, CMAES-
QNGI. In each figure the results for dimension n = 10 are shown in plot (a), and the
results for dimension n = 30 are shown in plot (b). We do not show the results of
CMAES-QNGI at n = 30 since that algorithm does not perform well as will be discussed
further below. For n = 10, the population size λ = 30 with µ = 15 parents being selected
at each generation, while with n = 30 we use λ = 80 and µ = 40.. The initial global
step size, σ is set to 30% of the total length of the search domain in each dimension.
The initial population is sampled from a uniform distribution, and the same samples
are used to initialize each of the three algorithms. For the CMAES-RBFLSI algorithm,
the local RBF approximation is constructed using the k nearest neighbors with k =
(n + 1)(n + 2) which is twice the minimum number of points necessary to construct
a quadratic polynomial interpolant in Rn. The k nearest neighbors are selected from
among the last N = 2k individuals that have been evaluated. The algorithm is stopped
when a minimum objective function value of 10−10 is reached or when the best objective
function value does not change for the last 10 + 30n/λ generations or when the ratio
of the range of the current function values to the maximum current function value is
below TolFun= 5× 10−10. The maximum number of function evaluations was set to be
n× 104.

Several points can be made upon inspection of the convergence graphs in Figures 3-9.
First, the approach of Tahk et al. (2009) appears to interfere with the convergence of
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Figure 3. Convergence graphs for, f1, the Schwefel 1.2 quadratic, unimodal function in 10 (a) and
30 (b) dimensions. Convergence is nearly instantaneous for CMAES-RBFLSI once enough points
are obtained for an interpolant.
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Figure 4. Convergence graphs for, f2, the cone function in 10 (a) and 30 (b) dimensions. The cone
function is unimodal, but not differntiable at the minimum. Speedup is neglible.

CMAES. This does not seem to be a case of simple error in implementing their strategy
as we have been able to successfully implement and test it in the context of a standard
evolution strategy; results not shown here. Rather the symmetrization of the population
at each generation seems to interfere with the covariance matrix adaptation and/or step
size adaptation algorithm in CMAES. It may be possible to develop a new version of
CMAES which can accomodate the symmetrized population used in CMAES-QNGI, but
that is beyond the scope of the current paper. The RBF local search individual approach
does not have this difficulty since it does not modify the existing population of the
evolution strategy other than simply appending an extra individual to the population.

A second observation is that for simple functions which are sufficiently smooth near
their minima, such as the Schewefel 1.2 quadratic (f1; Figure 3) and Rosenbrock (f3;
Figure 5) functions the CMAES-RBFLSI algorithm requires significantly fewer function
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Figure 5. Convergence graphs for, f3, the generalized Rosenbrock function in 10 (a) and 30 (b)
dimensions. It has two minima and is smooth, but has a long, flat and narrow valley that makes
optimization slow for most algorithms. CMAES clearly benefits from local search as the minimum
is approached.
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Figure 6. Convergence graphs for, f4, the Schwefel 1.5 function in 10 (a) and 30 (b) dimensions. It
is unimodal with the minimum at x = 0, but is not differentiable if any xi = 0, i = 1, . . . , n.

evaluations than standard CMAES. However, when the function is not differentiable at
the minima the speedup due to the proposed algorithm is quite small. The latter is
evident in the cone functon (f2; Figure 4), Schwefel 1.5 function(f4; Figure 6), and even
the multimodal Ackley function (f7; Figure 9).

The hybrid algorithm performs well for multimodal functions as well. For instance, in 10
and 30 dimensions there are significant reductions in the number of function evaluations
for the Griewank function (f5; Figure 7). The Griewank function is a relatively easy
function for CMAES to optimize, but the CMAES-RBFLSI is able converge more quickly
in the vicinity of the smooth global minimum. In fact, in many of the trials, the radial
basis function local search individual is very close to the global minimum very early in
the run, giving rise to the dips in the convergence curves for CMAES-RBFLSI in Figure
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Figure 7. Convergence graphs for, f5, the Griewank function in 10 (a) and 30 (b) dimensions. It is
multimodal and smooth. While the Griewank function is not particularly challenging for CMAES, it
nevertheless is greatly accelerated by inclusion of the local search individual. The radial basis function
search individual often nearly finds the global optimum early in the optimization run giving rise to
the dips in these convergence graphs.
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Figure 8. Convergence graphs for, f6, the Rastrigin function in 10 (a) and 30 (b) dimensions. It is
multimodal and smooth. For this function restarts and population doubling are used; see the text.
This function is difficult for CMAES which rarely finds the global minimum, but CMAES-RBFLSI
is much more reliable.

7. The Rastrign function (f6; Figure 8) is more interesting as the population size needs
to be quite large to locate the global minimum. For this function a population doubling
restart scheme (Auger and Hansen 2005) was used in which the algorithm was restarted
iteratively with population size λk = 2kλ, k = 1, 2, 3, 4, and µ = λk/2. In 10 dimensions
CMAES locates the global minimum in only 5 of the 30 trials, while in 30 dimensions
only 4 of the 30 trials. While with CMAES-RBFLSI, the global minimum is located in
22 or 30 trials in 10 dimensions and in 26 of 30 trials in 30 dimensions. Evidently, the
proposed algorithm is able to more quickly converge to local minima in each restart and
is thus able to use the computational budget more efficiently to find the global minimum.
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Figure 9. Convergence graphs for, f7, the Ackley function in 10 (a) and 30 (b) dimensions. It is
multimodal and not differentiable at the global minimum. For this function restarts and population
doubling are used; see the text.

5. Application to calibration of a watershed model.

To demonstrate the utility of the CMAES-RBFLSI algorithm in a practical setting we
used the algorithm to calibrate HYMOD, a five-parameter conceptual rainfall-runoff
model (see Figure 11), introduced by Boyle (2000). In short, given time series of daily
precipitation (P ) and evapotranspiration (ET ) data the objective is to tune the param-
eters so that the least squares error between the model predicted stream flow time series
and the observed stream flow time series is minimized. Such problems are usually charac-
terized by multiple minima, sometimes unidentifiable parameters and even discontinuities
in the objective function (Duan et al. 1992).

Figure 10. Schematic representation of the HYMOD model; from (Vrugt et al. 2003)

In attempts to parsimoniously represent the salient features of the precipitation-runoff
process in a watershed system, the HYMOD model model structure (Moore 1985) is
characterized by two series of linear reservoirs; in particular, three identical quick and a
single slow response reservoir. The five parameters to be calibrated for the model stream
flow to match the observed stream flow data are: the maximum storage capacity of the
catchement, Cmax; the degree of spatial variability of the soil moisture capacity, bexp;
the factor distributing flow between the two series of reservoirs, Alpha; and the residence
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time of the linear quick and slow reservoirs,Rq andRs, respectively. The hydrologic model
parameters are inferred by adjusting their values until an acceptable level of agreement
is achieved between a set of historical observations of the real world system that the
model represents and their simulated counterparts. In this case, the objective function
is simply the sum of the squared differences between the observed and simulated daily
stream flows.

Three years, October 1, 1948, to September 30, 1951, of daily hydrologic data from
the Leaf River watershed were used for model calibration. This humid 1944 km2 wa-
tershed is located north of Collins, Mississippi. The data, obtained from the National
Weather Service Hydrology Labratory, consist of mean areal precipitation (mm/d), po-
tential evapotranspiration (mm/d), and stream flow (m3/s).

Table 3. Uncertainty ranges of HYMOD model parameters

Minimum Maximum Unit
Cmax 1.000 500.000 mm
bexp 0.100 2.000
Alpha 0.100 0.990
Rs 0.000 0.300 day
Rq 0.000 0.990 day

The CMAES and CMAES-RBFLSI algorithms are each applied to the optimization or
calibration of the HYMOD model for 30 trials. The initial ranges of the parameter values
are shown in Table 3; similar ranges of parameter values are used in model calibration
study in (Vrugt et al. 2003). As for the mathematical test functions discussed above,
the algorithms are initialized with the same uniform initial distributions. We set λ = 10
and µ = 5. Each algorithm stops when TolFun= 5e − 4, as described previously. For
CMAES-RBFLSI the number of nearest neighbors used for the local RBF is k = d1.5(n+
1)(n+ 2)/2e = 23 chosen from the last N = 2k = 46 evaluated points.
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Figure 11. Convergence of CMAES and CMAES-RBFLSI for the HYMOD model.

There are many local minima, but CMAES and CMAES-RBFLSI nearly always
converge to one of two minima x1 = (157.0796, 0.5440, 0.2376, 0.2624, 0.8178) where

15



September 10, 2010 9:44 Engineering Optimization GI˙paper1˙2010˙last

fHYMOD(x1) = 128.5346 or x2 = (146.9868, 0.7165, 0.2416, 0.2619, 0.8313) where
fHYMOD(x2) = 128.6374. The global minimum appears to be at x1 but CMAES
converges to x2 in 28 of 30 trials, while CMAES-RBFLSI converges to the same
minimum in 27 of 30 trials. Evidently, the basin of attraction for the global minimum,
x1, is quite small as both algorithms have trouble finding it. The accelerated convergence
of CMAES-RBFLSI to the local minimum of the HYMOD model is demonstrated in
Figure 11. For each trial the best function value is saved at each generation. The median
function value over the thirty trials minus the value at the local minimum , f(x2),
is plotted versus the number of function evaluations. As Fiure 11 demonstrates, the
increase in convergence speed is quite dramatic: CMAES-RBFGI typically converges
with fewer than half of the objective function evaluations. Though neither algorithm
reliably locates the global minimum, both algorithms give good approximations to
the global minimum that produce adequate approximations to the daily stream flows.
To locate the global minimum reliably, a restart strategy could be used as with the
Rastrigin function above. The RBFLSI method would still accelerate the convergence
significantly.

6. Conclusions

The local search individual hybridization approach for evolution strategies has been
shown to be effective for significantly accelerating the convergence of the covariance
matrix adaptation evolution strategy for functions which exhibit sufficient smoothness
near the minimum. Likewise, it also works with the standard evolution strategy, though
the results are not shown here.

To develop a hybrid evolution strategy using local RBF approximation, as we have
done here, requires very little modification of the actual evolution strategy. The evolving
population itself is not modified, but the additional local search individual is added at
each generation. In the approach of Tahk et al. (2009) the population is chosen symmet-
rically at each generation and, as seen here, this can interfere with the convergence of
CMAES.

Another advantage to this approach is that no minimum population size is required.
In (Tahk et al. 2007, 2009) the population size must be at least twice the dimension of
the search space to estimate the gradient vector. The downside of RBFGI approach is
that it is expensive to form the coefficient matrix in Eq. (4). Moreover, the size of that
system scales as O(n2), so its solution by a direct method requires O(n6) operations
per generation. Thus, there is a trade-off between the computational complexity of the
RBFLSI method and the gain due to fewer function evaluations. For expensive objective
functions the cost of adding a local search individual propagated by local radial basis
function approximation is expected to be incidental and the increase in speed can be
enormous. As a result, the RBFLSI approach should be incorporated into evolution
strategies for expensive functions as it can sometimes greatly increase converge speed
and reliability with little downside.

In a future work we will consider a local search based on a trust region search along the
Newton update direction on the local radial basis function approximation, as in (Wild
et al. 2008) to locate the local search individual. The integration of a more robust local
search may improve the local convergence properties of this hybridization approach.
Acknowledgements
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Introduction 

Hydrologic models, regardless of their type (e.g., empirical, physics-based), often contain 

parameters that cannot be measured directly either because they have no physical basis, it 

would be impractical, or due to an incompatibility of scales, among other possible reasons. 

Hence, hydrologic model parameters are inferred by adjusting their values until an acceptable 

level of agreement is achieved between a set of historical observations of the real world system 

that the model represents and their simulated counterparts. While manual model calibration is 

certainly one approach to the problem, it is subjective, labor-intensive, and may also suffer 

from a lack of consistency and/or repeatability, among others. Moreover, it is difficult to 

imagine how even an experienced modeler would necessarily manage, in a manual calibration 

context, the large number of estimable parameters associated with present day practice driven 

complex hydrologic model deployments. Fortunately, the computer-based calibration of 

hydrologic models (which, in contrast with the manual approach to model calibration is more 

objective, repeatable, and better capitalizes on the computational capacity of the modern 

computer) is an active area of research and development (see; for example, Baggett and Skahill, 

2010a; Baggett and Skahill, 2010b; Skahill et al., 2009, Skahill and Doherty, 2006; Doherty and 

Skahill, 2006, and references cited therein) which has resulted in numerous automatic 



 
 

calibration methods that are readily available (see Mattot et al., 2009 and references cited 

therein) for the modern day hydrologic modeler to employ. And the knowledge gained by their 

application and development has provided the hydrologic modeling community with a better 

understanding of some of the complications associated with calibrating hydrologic models; viz., 

among others, the existence of multiple local optima, non-smooth objective function surfaces, 

and long valleys in parameter space that are a result of excessive parameter correlation or 

insensitivity (Gupta et al., 2003; Duan et al., 1992).  

As mentioned, hydrologic models are typically calibrated by adjusting parameters encapsulated 

in the simulator until there is an acceptable level of agreement between a set of historical data 

and their model simulated counterparts. The parameters obtained via calibration are often 

then used by the model to predict system behavior for one or more pre-defined scenarios of 

interest to different groups whose life or livelihood is rooted in the local model study area. 

Regardless of the calibration method employed and the type (e.g., empirical or physics-based) 

of model used some if not all of the parameter values obtained through the calibration process 

possess a degree of quantifiable uncertainty because the observed data contain measurement 

errors and also because the model never perfectly represents the watershed system or exactly 

fits the observation data. And where model parameters are uncertain so too are model 

predictions. In particular, quantifying uncertainty supports, among others, the following 

hydrologic modeling activities (Schoups and Vrugt, 2010; Schoups et al., 2010): 

 

1. model comparison and selection, 

2. identification of the best water management strategies that reflect the likelihood of 

outcomes, 

3. data collection aimed at improving hydrologic predictions and water management, and 

4. regionalization and extrapolation of hydrologic parameters to ungauged basins. 

 

For example, regarding item 4 above, to quote Vrugt et al. (2003a), “If we want to be able to 

regionalize or relate model parameters to easily measurable land or soil-surface characteristics, 



 
 

a prerequisite is that the parameters be unique, preferably having a small variance. From this 

perspective, it is necessary to infer the parameter uncertainty resulting from calibration 

studies.” 

Model uncertainty, characterized by the model covariance matrix calculated using the model 

Jacobian evaluated at the best estimate for the model, can be quantified by employing a 

traditional linear analysis. However, this approach is local which does not dovetail well with the 

understanding that for hydrologic models there may exist many effectively equally acceptable 

models; i.e., it is difficult to identify a unique best estimate; and moreover, that the set of good 

models may very well not necessarily even be a closed and bounded set interior to feasible 

parameter space. In addition, it relies on a linearity assumption that is often violated in 

hydrologic modeling practice.  

Bayesian-based approaches to model calibration, wherein a prior distribution for the model is 

proposed, and the vector of adjustable model parameters is treated as a random variable with 

a target probability distribution that is conditioned with observed data, are a formal means to 

obtain a realistic and reliable estimate of model uncertainty. In particular, Markov Chain Monte 

Carlo (MCMC) simulation, which is by far more efficient than other Monte Carlo methods, is 

used for inference, search, and optimization with hydrologic models (Harmon and Challenor, 

1997; Kuczera and Parent, 1998; Campbell et al., 1999; Campbell and Bates, 2001; Makowski et 

al., 2002; Qian et al., 2003; Kanso et al., 2003; Vrugt et al., 2003a; Vrugt et al., 2003b; Vrugt et 

al., 2008). With MCMC we are interested in a target probability distribution, and its key 

elements include exploration of this distribution by way of some sort of random walk or 

diffusion process that must be initialized in an arbitrary way because we don’t know a priori 

where good places necessarily are in parameter space. The random walk is directed by Markov 

chain simulation wherein the next step only depends on the previous step, and eventually after 

a burn in period the target distribution is identified.  

An obvious advantage of the MCMC method is that no assumptions of model linearity, or even 

of differentiability of model outputs with respect to parameter values, are required for its 

implementation; hence it is extremely robust. However, this robustness comes at a cost, this 



 
 

being the high number of model runs required for its implementation. The choice of the 

proposal distribution, which expresses prior information about the model, can greatly affect the 

efficiency of an MCMC sampler. A poorly chosen proposal distribution will result in slow 

convergence to the target distribution. Unfortunately, for complex hydrologic models there is 

very little a priori knowledge of the high probability density region within parameter space. 

Hence, with hydrologic models an uninformative prior; wherein all parameters have equal 

likelihood, may often be the best we can do. Clearly, for hydrologic modeling, there is a need to 

design efficient MCMC samplers, and this observation was the motivation for the development 

of the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), an effective and efficient 

adaptive MCMC sampler which tunes the proposal distribution during the evolution to the 

stationary posterior target distribution (Vrugt et al., 2003a). 

The SCEM-UA algorithm is a modification to the SCE-UA global optimization algorithm (Duan et 

al., 1992; Duan et al., 1993). There are two primary modifications both which prevent SCEM-UA 

from collapsing into the region of a single best parameter set. The first modification involves 

replacement of the downhill simplex method with the Metropolis-annealing scheme 

(Metropolis et al., 1953). The second modification is that SCEM-UA does not further subdivide 

the complex into subcomplexes during the generation of candidate points and it uses a 

different replacement procedure. In presenting the SCEM-UA algorithm, Vrugt et al. (2003a) 

noted that their principal focus was algorithm efficiency; viz., the number of simulations 

needed to converge to the stationary posterior probability distribution. They compared the 

traditional Metropolis-Hastings sampler (Metropolis et al., 1953; Hastings, 1970) with SCEM-UA 

to infer the posterior distribution of five parameters associated with a conceptual rainfall-

runoff model. It took SCEM-UA approximately 4,000 simulations to converge to the stationary 

posterior distribution, based on evaluation of the Gelman and Rubin convergence diagnostic 

(Gelman and Rubin, 1992); whereas, even after 30,000 simulations the Metropolis-Hastings 

algorithm had not converged to the target distribution when applying the same convergence 

criteria. 



 
 

An important consideration in assessing the performance of model calibration software is that 

of run time. Model calibration software, no matter what its algorithmic basis, must run the 

hydrologic model to be calibrated many times in the course of minimizing the objective 

function that is used to characterize model-to-measurement misfit. Minimizing the number of 

hydrologic model runs required during the calibration process is nearly always important, but 

particularly when the objective function landscape contains multiple local minima or hydrologic 

model run times are high. Minimizing the number of required model runs is the primary factor 

driving the research and development to be discussed herein, such that the resulting 

optimization and uncertainty tool is compatible with the computationally expensive physics-

based models that are becoming more commonly used within the practice community. 

Recent research and development activity directed at improving the efficiency of native 

computer-based model calibration algorithms includes the work of Skahill et al. (2009) and 

Baggett and Skahill (2010a,b), among others. Skahill et al. (2009) developed an accelerated 

derivative-based local search algorithm and based on three separate modeling applications 

demonstrated efficiency gains anywhere from 36-84% in comparison with the native algorithm. 

Baggett and Skahill (2010a,b) reported on an efficiency enhancement to the state-of-the-art 

covariance matrix adaption evolution strategy (CMAES) (Hansen, 2006) for global parameter 

identification of difficult problems with noise or other features that make derivatives 

estimation difficult. The increase in convergence speed was quite dramatic for their modified 

CMAES algorithm, which uses a local radial basis function approximation to the objective 

function to compute approximate first and second derivatives to the objective function surface  

to propagate a gradient individual alongside the evolving population for possible selection each 

generation. Based on a summary of thirty trials, it converged with fewer than half of the 

objective function evaluations required by CMAES when applied to calibrate a hydrologic 

model.  

The primary objective of the research and development encapsulated in this report was to 

improve upon the already existing documented efficiency of an existing state-of-the-art 

Bayesian model uncertainty analysis method (Vrugt et al., 2003a). The principal approach that 



 
 

was employed to achieve the stated objective was to simultaneously and adaptively construct 

an approximation to the objective function.  

 

Background 

The hydrologic model f can be written as 

ŷ = f(θ; x) + e         (1)  

where ŷ, x, θ, and e represent, respectively, the vector of model outputs, structural aspects of 

the model, as well as its input dataset, model parameters that are adjustable through the 

calibration process, and the vector of statistically independent error terms with zero 

expectation and constant variance σ2. Given the vector of observations y, the vector of 

residuals is given by   

e(θ) = ŷ – y         (2) 

Bayesian statistics treats the model parameters θ as probabilistic variables having a joint 

posterior probability density function (pdf), p(θ|y). The posterior pdf is a probabilistic 

statement about the parameters θ conditioned on the observed data y. At the core of Bayesian 

inference is Bayes’ rule, which is given by  

p(θ|y) ∝ L(y|θ) p(θ)        (3) 

where p() indicates probability, p(θ|y) is the posterior probability distribution of the 

parameters θ, L(y|θ) is the likelihood function, and p(θ) is the prior probability density function. 

The prior pdf, p(θ), represents information about θ before any data are collected. A critical 

term in Bayes’ rule is the likelihood term; likelihoods can only be calculated if an error model is 

available. Assuming that the residuals are mutually independent, Gaussian distributed, with 

constant variance, and further assuming a noninformative prior of the form p(θ) ∝ σ-1, Box and  

Tiao (1973) derived the following form for the posterior probability distribution of θ: 



 
 

p(θ|y) ∝ [M(θ)]-N(1+γ)/2        (4) 

where 

M(θ) = ∑ ൫݁(ߠ)൯ଶ (ଵାஓ)⁄ே௜ୀଵ        (5) 

 

The Shuffled Complex Evolution Metropolis Function Approximation Algorithm 

The goal of the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm, a Markov Chain 

Monte Carlo sampler developed by Vrugt et al. (2003a) which is a modified version of the 

original SCE-UA global optimization algorithm developed by Duan et al. (1992) was to efficiently 

(and by efficiency, we mean the number of forward model calls necessary to converge to the 

target posterior distribution) infer the posterior distribution of hydrologic model parameters. 

The SCEM-UA algorithm is not only able to effectively infer the posterior distribution of 

hydrologic model parameters but also the most likely parameters within this high probability 

density region. Function approximation methods have successfully been employed to improve 

upon the efficiency of native evolutionary strategies utilized for model calibration; for example, 

see Baggett and Skahill (2010a,b) and references cited therein. By interfacing function 

approximation methods with the native SCEM-UA algorithm, we further improve upon the 

already existing reported efficiencies of the SCEM-UA MCMC sampler. The new algorithm 

presented in full herein, entitled the Shuffled Complex Evolution Metropolis Function 

Approximation (SCEM-FA) algorithm, is given below and also illustrated in Figures 1 and 2. The 

SCEM-FA algorithm retains all of the elements of the original SCEM-UA algorithm. And we refer 

the interested reader to Vrugt et al. (2003a) for a thorough description and discussion of the 

original SCEM-UA algorithm. However, for purposes of completeness, we present the entire 

SCEM-FA algorithm. We will emphasize those parts which constitute the existing function 

approximation interface to the original SCEM-UA algorithm. For further clarity regarding the 

SCEM-FA and SCEM-UA algorithms, we make mention now of the fact that the function 

approximation interface methodology presented herein is not only possible with SCEM-UA, but 



 
 

likely could also easily be adapted and employed with other MCMC samplers; for example, 

DREAM (Vrugt et al., 2008). 

1. Generate sample. Sample s {θ1, θ2, ..., θs} points randomly from the prior distribution 

and compute the posterior density of each point {p(θ(1)|y), p(θ(2)|y), …, p(θ(s)|y)} using 

equation (4). 

2. Rank points. Sort the s points in order of decreasing posterior density and store them in 

array D[1:s, 1:n + 1] where n is the number of parameters, so that the first row of D 

represents the point with the highest posterior density. 

3. Build function approximation. Train a locally weighted projection regression function 

(LWPR) approximation (Vijayakumar et al., 2005) using the s points randomly sampled 

from the prior distribution. If the sample is small, then present the sample to LWPR 

multiple times in random order. 

4. Initialize parallel sequences. Initialize the starting points of the parallel sequences, S1, 

S2, …, Sq, such that Sk is D[k, 1:n + 1], where k = 1, 2, ..., q. 

5. Partition into complexes. Partition the s points of D into q complexes C1, C2, …, Cq, each 

containing m points, such that the first complex contains every q(j-1)+1 ranked point, 

the second complex contains every q(j-1)+2 ranked point of D, and so on, where j = 1, 2, 

…, m.   

6. Evolve each sequence. Evolve each of the parallel sequences according to the Sequence 

Evolution Metropolis Function Approximation (SEM-FA) algorithm outlined below. 

7. Adjust SEM-FA input value r. Based on the monitored acceptance rate in SEM-FA, and 

predefined input values for an acceptance rate threshold for SEM-FA, and the 

occurrence frequency for SEM-FA input parameter adjustment, update the SEM-FA 

input, r, a number in the interval (0,1) which effectively dials in or out the employment 

of function approximation in SEM-FA.  

8. Shuffle complexes. Unpack all complexes C back into D, rank the points in order of 

decreasing posterior density, and reshuffle the s points into q complexes according to 

the procedure specified in step 5.  



 
 

9. Check convergence. Check the Gelman and Rubin convergence statistic (Gelman and 

Rubin, 1992). If convergence criteria are satisfied, stop; otherwise, return to step 6.  

 

Items 3, 6, and 7 above are specific to the SCEM-FA algorithm while the other elements are a 

restatement of the native SCEM-UA algorithm originally presented in Vrugt et al. (2003a). The 

first modification, listed in item 3 above, uses the initial random sample to build a function 

approximation model which is later used in SEM-FA as a surrogate for the objective function. 

While locally weighted progression regression (Vijayakumar et al., 2005) was the function 

approximation method used for the current modifications to the SCEM-UA algorithm 

documented in this report, alternative function approximation methods, such as radial basis 

functions (Powell, 1992), could also have been used. Item 6 above refers to the SEM-FA 

algorithm which is presented and discussed below while item 7 above refers to the current 

method that is employed to regulate the degree to which the function approximation model is 

utilized in SEM-FA. Both items 6 and 7 will be discussed further below.  

As Vrugt et al. (2003a) mention, one of the essential elements of the SCEM-UA algorithm is the 

Sequence Evolution Metropolis (SEM) algorithm, wherein new candidate points are produced in 

each of the parallel sequences Sk and the Metropolis algorithm is used to test whether or not 

the candidate point should be added to the current sequence. As part of the overall effort to 

further improve upon the already existing reported efficiencies of the SCEM-UA MCMC 

sampler, the SEM algorithm was adapted to include a function approximation model which is 

used as a surrogate for the objective function. It is named SEM-FA for Sequence Evolution 

Metropolis Function Approximation and it is presented below and also in Figure 2. As with the 

previously mentioned comparison of the SCEM-UA and SCEM-FA algorithms, the SEM-FA 

algorithm retains all of the elements of the original SEM algorithm. And we refer the interested 

reader to Vrugt et al. (2003a) for a thorough description and discussion of the original SEM 

algorithm. However, for purposes of completeness, we present the entire SEM-FA algorithm. 

We will emphasize those parts which constitute the existing function approximation interface 

to the original SEM algorithm. 



 
 

I. Compute the mean, µk, and covariance structure ∑k of the parameters of Ck. Sort the m 

points in complex Ck in order of decreasing posterior density and compute Γk, the ratio 

of the posterior density of first (“best”) to the posterior density of the last (“worst”) 

member of Ck.     

II. Compute αk, the ratio of the mean posterior density of the m points in C k to the mean 

posterior density of the last m generated points in Sk. 

III. If αk is smaller than a predefined likelihood ratio, T, generate a candidate point, θ(t+1), by 

using a multinormal distribution centered on the last draw, θ(t), of the sequence, Sk, and 

covariance structure cn
2∑k, where cn is a predefined jumprate. Go to step V, otherwise, 

continue with step IV. 

IV. Generate offspring, θ(t+1), by using a multinormal distribution with mean µk and 

covariance structure cn
2∑k, and go to step V. 

V. If the random number from the interval (0,1), input from SCEM-FA, is less than r, then 

use the function approximation to compute the posterior dentisty, p(θ(t+1)|y), of θ(t+1) 

using equation (4). If the generated candidate point is outside the feasible parameter 

space, then set p(θ(t+1)|y) to zero. 

VI. If the random number from the interval (0,1), input from SCEM-FA, is greater than or 

equal to r, then perform a forward model call, compute the posterior dentisty, 

p(θ(t+1)|y), of θ(t+1) using equation (4), and update the LWPR function approximation with 

the new data point θ(t+1). If the generated candidate point is outside the feasible 

parameter space, then set p(θ(t+1)|y) to zero.  

VII. Randomly sample a uniform label Z over the interval 0 to 1.  

VIII. If the random number from the interval (0,1), input from SCEM-FA, is less than r, then 

go to step IX; otherwise, go to step XII. 

IX. Compute the ratio Ω = p(θ(t+1)|y)/ p(θ(t)|y). If Z is smaller than or identical to Ω, then 

perform a forward model call, compute the posterior dentisty, p(θ(t+1)|y), of θ(t+1) using 

equation (4), and update the LWPR function approximation with the new data point 

θ(t+1). If the generated candidate point is outside the feasible parameter space, then set 

p(θ(t+1)|y) to zero.  



 
 

X. However, if Z is larger than Ω, reject the candidate point and remain at the current 

position in the sequence, that is, θ(t+1) = θ(t). Go to step XIII. 

XI. Recompute the ratio Ω = p(θ(t+1)|y)/ p(θ(t)|y). If Z is smaller than or identical to Ω, then 

accept the new candidate point. However, if Z is larger than Ω, reject the candidate 

point and remain at the current position in the sequence, that is, θ(t+1) = θ(t). Go to step 

XIII. 

XII. Compute the ratio Ω = p(θ(t+1)|y)/ p(θ(t)|y). If Z is smaller than or identical to Ω, then 

accept the new candidate point. However, if Z is larger than Ω, reject the candidate 

point and remain at the current position in the sequence, that is, θ(t+1) = θ(t). 

XIII. Add the point θ(t+1) to the sequence Sk. 

XIV. If the candidate point is accepted, replace the best member of C k with θ(t+1), and go to 

step XV; otherwise replace the worst member (m) of C k with θ(t+1), provided that Γk is 

larger than the predefined likelihood ratio, T, and p(θ(t+1)|y) is higher than the posterior 

density of the worst member of Ck. 

XV. Repeat the steps I – XIII L times, where L is the number of evolution steps taken by each 

sequence before complexes are shuffled. 

 

Items I – IV, VI, VII, and XII – XV (with the SCEM-FA input value r set to zero) are a restatement 

of the native SEM algorithm originally presented in Vrugt et al. (2003a). The SCEM-FA algorithm 

is equivalent to the original SCEM-UA algorithm when the SCEM-FA input parameter r is set to a 

value of zero. Items I – XV directly above list the existing modification to the original SEM 

algorithm.  

The basic reasoning behind SEM-FA is that if the function approximation prediction, which is 

used as a surrogate for the objective function, suggests that the candidate point should be 

selected, by way of evaluation of the Metropolis algorithm criterion (Metropolis et al., 1953), 

then proceed ahead with a forward model call and re-evaluation of the Metropolis algorithm 

criterion to determine if in fact the candidate point is to be accepted or not. And if the 

Metropolis algorithm criterion computed using the function approximation prediction indicates 



 
 

otherwise, then reject the candidate point. In effect, the function approximation prediction 

serves as a screening device in that forward model calls are only performed when it suggests 

that it would be beneficial. And the degree to which the filter is applied is based on a SCEM-FA 

input parameter, r, which is dynamically adjusted during SCEM-FA execution, and its 

comparison (see Figure 2) with a unique randomly sampled uniform label over the interval 0 to 

1 that is passed to SEM-FA for the evolution of each sequence (see Figure 1).  

If the SCEM-FA input value for r is greater than zero, then the function approximation 

adaptations described above and also shown in Figures 1 and 2 will be active. In this case, the 

value for r is reset to zero at the beginning of SCEM-FA execution and dynamic adjustment is 

subsequently based not only on a comparison of the candidate point acceptance rate within 

SEM-FA with a user specified acceptance rate threshold, but also the integer value for a 

persistence parameter which determines the frequency for updating the value for r. In 

particular, at present, if it is an opportunity to update r and the SEM-FA acceptance rate is 

less/greater than the user specified acceptance rate threshold, then decrease/increase the 

value for r by one-tenth. The minimum possible value for r is zero, and its maximum is 

equivalent to its specified input value. At present, an input value is specified for r. However, it 

could possibly be effectively removed as an input for SCEM-FA by altering the existing dynamic 

adjustment process to simply allow the value for r to vary between zero and one. Testing is 

needed to explore this potential opportunity. If it is not already clear to the reader, 

decreasing/increasing the value for r increases/decreases the number of forward model calls 

within SEM-FA.  

Guidance for the proper selection of SCEM-UA algorithmic input parameter values can be found 

in Vrugt et al. (2003a). The SCEM-FA algorithm contains three additional parameters that at 

present need to be specified by the user. These are (1) the random number threshold, r, (2) the 

acceptance rate threshold, a, and (3) the parameter, p, an integer value which determines the 

update frequency for r. The increment/decrement value embedded in the dynamic adjustment 

process for r could also be viewed as a parameter that could possibly impact SCEM-FA 

performance. Further exploration in terms of how these parameters affect the reliability (i.e., 



 
 

the capacity to converge to the same posterior probability distribution as the native SCEM-UA 

algorithm) and efficiency of SCEM-FA is needed before any recommendations can be provided 

for default values. However, optimal acceptance rates for MCMC samplers range anywhere 

from 20 – 70% in the literature (Gallagher and Doherty, 2007).  

Additional opportunities exist, of course, for further exploration in terms of their potential 

capacity to yield additional efficiency gains beyond those already achieved and documented 

below with the existing SCEM-FA implementation. These include, among others, (1) relaxing the 

current requirement to perform a forward model call every time the function approximation 

suggests that the candidate point is to be accepted, and (2) comparing the current function 

approximation model with an alternative model, such as radial basis functions (Powell, 1992). 

Both of these opportunities would be modest development efforts. 

With respect to the first opportunity noted directly above, at present, SCEM-FA is biased 

conservatively in that we completely trust the function approximation prediction to reject 

candidate points; whereas, if the function approximation prediction suggests that the candidate 

point is to be accepted, then we go to additional measures to ensure that is in fact the case. 

One alternative would be to simply accept the candidate point when the function 

approximation prediction suggests it should; however, that approach may be too aggressive 

and impair the reliability of SCEM-FA. A relatively simple easily implementable approach would 

be to monitor the success rate of the function approximation prediction and use that as a basis 

for deciding whether to perform a forward model call after the function approximation 

prediction suggests the candidate point is to be accepted. The second opportunity mentioned 

directly above would be a fairly modest effort because early SCEM-FA development utilized a k-

nearest neighbor cubic radial basis function (RBF) local function approximation model rather 

than locally weighted projection regression (LWPR).  

 

 



 
 

 

Figure 1. Flowchart of the SCEM-FA algorithm. 



 
 

 

 

Figure 2. Flowchart of the SEM-FA algorithm employed in the SCEM-FA algorithm. 



 
 

Case Study  

To comprehensively demonstrate the efficiency gains that can be achieved with the SCEM-FA 

development efforts to date, all the while maintaining consistency with respect to convergence 

to the same target distribution, thirty unique instances of SCEM-UA and SCEM-FA were each 

employed to infer the posterior distribution of thirteen Sacramento soil moisture accounting 

(SAC-SMA) hydrologic model parameters using hydrologic data from the 1944 km2 Leaf River 

watershed near Collins, MS. The SAC-SMA hydrologic model is used by the National Weather 

Service (NWS) for flood forecasting throughout the United States. While it has 16 parameters 

that need to be specified by the user, consistent with previous work (see Vrugt et al., 2003b 

and references cited therein), 13 were specified as adjustable. The prior uncertainty ranges of 

the specified adjustable SAC-SMA hydrologic model parameters are defined in Table 1. The 

reader is referred to (see Vrugt et al., 2003b and references cited therein) for comprehensive 

discussions regarding the SAC-SMA hydrologic model, the Leaf River watershed, and also its 

related hydrologic data (viz., mean areal precipitation (mm/day), potential evapotranspiration 

(mm/day), and streamflow (m3/s)) that was used to support the effective inference of the 

posterior distribution of the SAC-SMA adjustable model parameters and also the most likely 

parameters within this high probability density region. 

Results associated with the thirty trials are summarized in Tables 2 – 8 and Figure 3. The results 

presented in Tables 2 – 5 are associated with an earlier version of SCEM-FA wherein the input 

parameter r was fixed and not dynamically adjusted as it is now, based on the candidate point 

acceptance rate, an acceptance rate threshold, and the persistence parameter, p, which 

dictates the update frequency for r. Examining the results in Table 2, we clearly see as one 

would expect, improved efficiency for SCEM-FA relative to SCEM-UA as the value for r 

increases. However, the improved efficiency that is obtained through more aggressive 

utilization of the function approximation prediction comes at the cost of decreased 

effectiveness in terms of convergence to the same posterior probability distribution as SCEM-

UA, evidenced upon inspection of the lower order statistics for the objective function and SAC-

SMA parameter values that are presented in Tables 3 – 5. 



 
 

In attempts to balance efficiency with effectiveness, different heuristics for controlling the 

activation of the function approximation prediction within SCEM-FA were subsequently 

implemented, resulting in the existing SCEM-FA implementation documented in this report. 

Based on the thirty trials, the average number of forward model calls for SCEM-UA was 87,253; 

whereas, it was 68,642 with SCEM-FA, resulting in an approximate 21% reduction in total 

forward model calls. Comparing lower order statistics associated with the objective function 

and related parameter values obtained from samples generated after convergence to a 

posterior distribution has been achieved with either the SCEM-FA or SCEM-UA, as shown in 

Tables 6 – 8, it is clear that the existing SCEM-FA algorithm converged to the same target 

distribution as SCEM-UA. The results presented in Figure 3, marginal posterior probability 

distributions of the SAC-SMA model parameters based on 15,000 (500 for each of the 30 trials) 

samples generated with the SCEM-UA and SCEM-FA algorithms after convergence has been 

achieved with SCEM-UA and SCEM-FA, further confirm this observation. The results presented 

in Tables 6 – 8 and Figure 3 were obtained with SCEM-FA input parameters set to r = 0.9, a = 

0.35, and p = 3. 

 

Parameter Minimum Maximum Unit 
UZTWM 1 150 [mm] 
UZFWM 1 150 [mm] 

UZK 0.1 0.5 day-1 
PCTIM 0 0.1 [-] 
ADIMP 0 0.4 [-] 
ZPERC 1 250 [-] 
REXP 1 5 [-] 

LZTWM 1 500 [mm] 
LZFSM 1 1000 [mm] 
LZFPM 1 1000 [mm] 
LZSK 0.01 0.25 day-1 
LZPK 0.0001 0.025 day-1 

PFREE 0 0.6 [-] 

Table 1. Prior Uncertainty Ranges of the SAC-SMA Model Parameters. 



 
 

Total Model Calls 
    SCEM-FA 

Random Number Threshold in SEM-FA 
  SCEM-UA 0.1 0.3 0.5 0.7 0.9 

Average 87253 79379 70602 66852 55158 50090 
% reduction   9.0 19.1 23.4 36.8 42.6 

Table 2. Summary of efficiency for an earlier version of SCEM-FA, relative to SCEM-UA, for fixed 

values of r. Results are based on thirty unique instances of the earlier version of SCEM-FA and 

also SCEM-UA. 

 

Method 
Objective Function Values 

Average Standard Deviation 
SCEM-UA 13.31669413 0.02331727 

SCEM-FA (r=0.1) 13.3073988 0.030142989 
SCEM-FA (r=0.3) 13.35390347 0.21756169 
SCEM-FA (r=0.5) 13.3382782 0.218278563 
SCEM-FA (r=0.7) 13.42101667 0.325857754 
SCEM-FA (r=0.9) 13.6533664 0.252643413 

Table 3. Summary of objective function value lower order statistics for an earlier version of 

SCEM-FA, relative to SCEM-UA, for fixed values of r. Each individual result is based on thirty 

unique instances for the earlier version of SCEM-FA and also SCEM-UA, in particular, 15,000 

(500 for each of the 30 trials) samples generated after convergence to a posterior distribution 

has been achieved with either the SCEM-FA or SCEM-UA. 

 

 

 



 
 

 

Table 4. Summary of SAC-SMA average parameter values obtained from an earlier version of 

SCEM-FA, for fixed values of r, and also SCEM-UA. Each individual result is based on thirty 

unique instances for the earlier version of SCEM-FA and also SCEM-UA, in particular, 15,000 

(500 for each of the 30 trials) samples generated after convergence to a posterior distribution 

has been achieved with either the SCEM-FA or SCEM-UA. 

 

 

Table 5. Summary of standard deviations associated with SAC-SMA parameter values obtained 

from an earlier version of SCEM-FA, for fixed values of r, and also SCEM-UA. Each individual 

result is based on thirty unique instances for the earlier version of SCEM-FA and also SCEM-UA, 

in particular, 15,000 (500 for each of the 30 trials) samples generated after convergence to a 

posterior distribution has been achieved with either the SCEM-FA or SCEM-UA. 

 

 

 

 

 



 
 

Method 
Objective Function Values 

Average Standard Deviation 
SCEM-UA 13.31669413 0.02331727 
SCEM-FA 13.27271167 0.02663205 

Table 6. Summary of objective function value lower order statistics for SCEM-FA, relative to 

SCEM-UA. Each individual result is based on thirty unique instances for SCEM-FA and also 

SCEM-UA, in particular, 15,000 (500 for each of the 30 trials) samples generated after 

convergence to a posterior distribution has been achieved with either the SCEM-FA or SCEM-

UA. 

 

 

Table 7. Summary of SAC-SMA average parameter values obtained from SCEM-FA and also 

SCEM-UA. Each individual result is based on thirty unique instances for SCEM-FA and also 

SCEM-UA, in particular, 15,000 (500 for each of the 30 trials) samples generated after 

convergence to a posterior distribution has been achieved with either the SCEM-FA or SCEM-

UA. 

 

 

Table 8. Summary of standard deviations associated with SAC-SMA parameter values obtained 

from SCEM-FA and also SCEM-UA. Each individual result is based on thirty unique instances for 

SCEM-FA and also SCEM-UA, in particular, 15,000 (500 for each of the 30 trials) samples 

generated after convergence to a posterior distribution has been achieved with either the 

SCEM-FA or SCEM-UA. 



 
 

 

Figure 3. The marginal posterior probability distributions of the SAC-SMA model parameters 

inferred for the Leaf River watershed using the 15,000 (500 for each of the 30 trials) samples 

generated with the SCEM-UA (1st and 3rd columns) and SCEM-FA (2nd and 4th columns) 

algorithms after convergence has been achieved with SCEM-UA and SCEM-FA.  

 

  



 
 

Summary 

This report began by outlining the need for hydrologic model calibration and, related, the 

realistic assessment of hydrologic model uncertainty, which has many benefits, including model 

comparison and selection, identification of the best water management strategies that reflect 

the likelihood of outcomes, data collection aimed at improving hydrologic predictions and 

water management, and regionalization and extrapolation of hydrologic parameters to 

ungauged basins. Bayesian-based approaches to model calibration, in particular Markov Chain 

Monte Carlo (MCMC) simulation methods, are a formal means to obtain a realistic and reliable 

estimate of model uncertainty. However, their application comes at a computational cost. For 

hydrologic modeling, it was noted that there is a need to design efficient MCMC samplers, and 

this observation was in fact the motivation for the development of the Shuffled Complex 

Evolution Metropolis algorithm (SCEM-UA) (Vrugt et al., 2003a). The primary objective of the 

research and development encapsulated in this report was to improve upon the already 

existing documented efficiency of the state-of-the-art Bayesian model uncertainty analysis 

method SCEM-UA (Vrugt et al., 2003a). As with other recent research and development activity 

that was directed to enhancing the efficiency to the state-of-the-art covariance matrix adaption 

evolution strategy (CMAES) (Baggett and Skahill, 2010a; Baggett and Skahill, 2010b), the 

principal approach that was employed to achieve that stated objective was to simultaneously 

and adaptively construct an approximation to the objective function.  

The report followed with some brief background material and then a description of the current 

methodology that is employed for interfacing a function approximation model with the native 

SCEM-UA algorithm to improve upon its already existing documented efficiency. Thereafter, 

based on a comprehensive set of thirty trials using the SAC-SMA soil moisture accounting 

hydrologic model and local hydrologic data for the Leaf River watershed near Collins, MS, it was 

clearly demonstrated that SCEM-FA was able to achieve, on average, a 21% reduction in total 

model calls while inferring the same posterior probability distribution as that obtained with 

SCEM-UA.  



 
 

Several opportunities exist for future development (and likely additional efficiency gains) and 

also application. Numerical experiments are needed to explore how the random number 

threshold, r, the acceptance rate threshold, a, the parameter, p, an integer value which 

determines the update frequency for r, and the increment/decrement value embedded in the 

dynamic adjustment process for r impact overall SCEM-FA performance, relative to SCEM-UA, in 

terms of efficiency and reliability. A relatively simple and easily implementable approach that 

would likely yield additional efficiency gains for the current implementation of SCEM-FA would 

be to monitor the success rate of the function approximation prediction and use that as a basis 

for deciding whether to perform a forward model call after the function approximation 

prediction suggests the candidate point is to be accepted. Early SCEM-FA development utilized 

a k-nearest neighbor cubic radial basis function (RBF) local function approximation model 

rather than locally weighted projection regression (LWPR). It would be interesting to explore 

how the two different function approximation models impact overall SCEM-FA performance, 

relative to SCEM-UA, in terms of efficiency and reliability. Moreover, it could be of potential 

benefit to explore ways in which the confidence estimate associated with the LWPR function 

approximation prediction could be beneficially used to improve overall SCEM-FA performance, 

relative to SCEM-UA, in terms of efficiency and reliability. Additional case studies are needed to 

further document SCEM-FA performance in terms of efficiency relative to SCEM-UA. And future 

applications need to focus on model prediction uncertainty. As was mentioned earlier, the 

methods reported upon in this report should be relatively easy to transfer to other MCMC 

methods. It is our intent to explore just that with the DREAM MCMC sampler, particularly in 

light of potential balance issues that have been presented regarding the SCEM-UA algorithm 

(Vrugt et al., 2008). The code for the SCEM-FA algorithm is available from the first author. 
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